Prediction of varying microcystins during non-thermal plasma oxidation of harvested microalgal biomass.
J Hazard Mater
; 403: 123596, 2021 02 05.
Article
en En
| MEDLINE
| ID: mdl-32829225
By capturing intracellular microcystins (MCs) release from microalgal cell destruction and extracellular MCs oxidation, this study suggests a mathematical model explaining the simultaneous removal of microalgae and their toxins (MC-LR, -RR, and -YR) in non-thermal plasma (NTP) application. Although the suggested model was built based on simplified kinetic assumptions, it can reasonably predict the behavior of extracellular MCs in a harvested/concentrated slurry of microalgae taken from a blooming site. After 24 h of NTP treatment, the experimental reduction of extracellular MCs was recorded up to â¼77 %. Regressions based on the experimental data reveal the degradation rate (8.60 d-1) and release rate (0.37 d-1) of MCs, which provides the essential physicochemical information about intracellular MCs release by microalgal cell destruction. Simulation results help to develop safe and useful control over the simultaneous treatment of harvested microalgal biomass and toxins. This study further demonstrates that the suggested model contributes to predicting the variation of MCs in mass management of microalgal biomass for sustainable utilization.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Microalgas
/
Gases em Plasma
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Países Bajos