Your browser doesn't support javascript.
loading
Tools of the trade: estimating time-varying connectivity patterns from fMRI data.
Iraji, Armin; Faghiri, Ashkan; Lewis, Noah; Fu, Zening; Rachakonda, Srinivas; Calhoun, Vince D.
Afiliación
  • Iraji A; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
  • Faghiri A; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
  • Lewis N; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
  • Fu Z; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
  • Rachakonda S; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
  • Calhoun VD; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
Soc Cogn Affect Neurosci ; 16(8): 849-874, 2021 08 05.
Article en En | MEDLINE | ID: mdl-32785604
Given the dynamic nature of the brain, there has always been a motivation to move beyond 'static' functional connectivity, which characterizes functional interactions over an extended period of time. Progress in data acquisition and advances in analytical neuroimaging methods now allow us to assess the whole brain's dynamic functional connectivity (dFC) and its network-based analog, dynamic functional network connectivity at the macroscale (mm) using fMRI. This has resulted in the rapid growth of analytical approaches, some of which are very complex, requiring technical expertise that could daunt researchers and neuroscientists. Meanwhile, making real progress toward understanding the association between brain dynamism and brain disorders can only be achieved through research conducted by domain experts, such as neuroscientists and psychiatrists. This article aims to provide a gentle introduction to the application of dFC. We first explain what dFC is and the circumstances under which it can be used. Next, we review two major categories of analytical approaches to capture dFC. We discuss caveats and considerations in dFC analysis. Finally, we walk readers through an openly accessible toolbox to capture dFC properties and briefly review some of the dynamic metrics calculated using this toolbox.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encefalopatías / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Soc Cogn Affect Neurosci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encefalopatías / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: Soc Cogn Affect Neurosci Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido