Systematic profiling of early regulators during tissue regeneration using zebrafish model.
Wound Repair Regen
; 29(1): 189-195, 2021 01.
Article
en En
| MEDLINE
| ID: mdl-32776615
Great progresses have been made in comprehension of tissue regeneration process. However, one of the central questions in regeneration research remains to be deciphered is what factors initiate regenerative process. In present study, we focused on systematic profiling of early regulators in tissue regeneration via high-throughput screening on zebrafish caudal fin model. Firstly, 53 GO-annotated regeneration-related genes, which were specifically activated upon fin amputation, were identified according to the transcriptomic analysis. Moreover, qRT-PCR analysis of a couple of randomly selected genes from the aforementioned gene list validated our sequencing results. These studies confirmed the reliability of transcriptome sequencing analysis. Fibroblast growth factor 20a (fgf20a) is a key initial factor in the regeneration of zebrafish. Through a gene expression correlation analysis, we discovered a collection of 70 genes correlating with fgf20a, whose expression increased promptly at 2 days post amputation (dpa) and went down to the basal level until the completion of fin regeneration. In addition, two genes, socs3b and nppc, were chosen to investigate their functions during the fin regeneration. Inhibition of either of those genes significantly delayed the regenerative process. Taken together, we provided a simple and effective time-saving strategy that may serve as a tool for identifying early regulators in regeneration and identified 71 genes as early regulators of fin regeneration.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Regeneración
/
Cicatrización de Heridas
/
Pez Cebra
/
Regulación de la Expresión Génica
/
Proteínas de Pez Cebra
/
Aletas de Animales
/
Factores de Crecimiento de Fibroblastos
/
Herida Quirúrgica
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Wound Repair Regen
Asunto de la revista:
DERMATOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos