Your browser doesn't support javascript.
loading
Can Momentum-Based Control Predict Human Balance Recovery Strategies?
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 2015-2024, 2020 09.
Article en En | MEDLINE | ID: mdl-32746307
Human-like balance controllers are desired for wearable exoskeletons in order to enhance human-robot interaction. Momentum-based controllers (MBC) have been successfully applied in bipeds, however, it is unknown to what degree they are able to mimic human balance responses. In this paper, we investigated the ability of an MBC to generate human-like balance recovery strategies during stance, and compared the results to those obtained with a linear full-state feedback (FSF) law. We used experimental data consisting of balance recovery responses of nine healthy subjects to anteroposterior platform translations of three different amplitudes. The MBC was not able to mimic the combination of trunk, thigh and shank angle trajectories that humans generated to recover from a perturbation. Compared to the FSF, the MBC was better at tracking thigh angles and worse at tracking trunk angles, whereas both controllers performed similarly in tracking shank angles. Although the MBC predicted stable balance responses, the human-likeness of the simulated responses generally decreased with an increased perturbation magnitude. Specifically, the shifts from ankle to hip strategy generated by the MBC were not similar to the ones observed in the human data. Although the MBC was not superior to the FSF in predicting human-like balance, we consider the MBC to be more suitable for implementation in exoskeletons, because of its ability to handle constraints (e.g. ankle torque limits). Additionally, more research into the control of angular momentum and the implementation of constraints could eventually result in the generation of more human-like balance recovery strategies by the MBC.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Equilibrio Postural / Tobillo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Asunto de la revista: ENGENHARIA BIOMEDICA / REABILITACAO Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Equilibrio Postural / Tobillo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Asunto de la revista: ENGENHARIA BIOMEDICA / REABILITACAO Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos