Your browser doesn't support javascript.
loading
Low concentration IL-1ß promotes islet amyloid formation by increasing hIAPP release from humanised mouse islets in vitro.
Templin, Andrew T; Mellati, Mahnaz; Meier, Daniel T; Esser, Nathalie; Hogan, Meghan F; Castillo, Joseph J; Akter, Rehana; Raleigh, Daniel P; Zraika, Sakeneh; Hull, Rebecca L; Kahn, Steven E.
Afiliación
  • Templin AT; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Mellati M; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Meier DT; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Esser N; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Hogan MF; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Castillo JJ; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Akter R; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
  • Raleigh DP; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
  • Zraika S; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Hull RL; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
  • Kahn SE; Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA. skahn@uw.edu.
Diabetologia ; 63(11): 2385-2395, 2020 11.
Article en En | MEDLINE | ID: mdl-32728889
AIMS/HYPOTHESIS: Aggregation of the beta cell secretory product human islet amyloid polypeptide (hIAPP) results in islet amyloid deposition, a pathological feature of type 2 diabetes. Amyloid formation is associated with increased levels of islet IL-1ß as well as beta cell dysfunction and death, but the mechanisms that promote amyloid deposition in situ remain unclear. We hypothesised that physiologically relevant concentrations of IL-1ß stimulate beta cell islet amyloid polypeptide (IAPP) release and promote amyloid formation. METHODS: We used a humanised mouse model of endogenous beta cell hIAPP expression to examine whether low (pg/ml) concentrations of IL-1ß promote islet amyloid formation in vitro. Amyloid-forming islets were cultured for 48 h in the presence or absence of IL-1ß with or without an IL-1ß neutralising antibody. Islet morphology was assessed by immunohistochemistry and islet mRNA expression, hormone content and release were also quantified. Cell-free thioflavin T assays were used to monitor hIAPP aggregation kinetics in the presence and absence of IL-1ß. RESULTS: Treatment with a low concentration of IL-1ß (4 pg/ml) for 48 h increased islet amyloid prevalence (93.52 ± 3.89% vs 43.83 ± 9.67% amyloid-containing islets) and amyloid severity (4.45 ± 0.82% vs 2.16 ± 0.50% amyloid area/islet area) in hIAPP-expressing mouse islets in vitro. This effect of IL-1ß was reduced when hIAPP-expressing islets were co-treated with an IL-1ß neutralising antibody. Cell-free hIAPP aggregation assays showed no effect of IL-1ß on hIAPP aggregation in vitro. Low concentration IL-1ß did not increase markers of the unfolded protein response (Atf4, Ddit3) or alter proIAPP processing enzyme gene expression (Pcsk1, Pcsk2, Cpe) in hIAPP-expressing islets. However, release of IAPP and insulin were increased over 48 h in IL-1ß-treated vs control islets (IAPP 0.409 ± 0.082 vs 0.165 ± 0.051 pmol/5 islets; insulin 87.5 ± 8.81 vs 48.3 ± 17.3 pmol/5 islets), and this effect was blocked by co-treatment with IL-1ß neutralising antibody. CONCLUSIONS/INTERPRETATION: Under amyloidogenic conditions, physiologically relevant levels of IL-1ß promote islet amyloid formation by increasing beta cell release of IAPP. Neutralisation of this effect of IL-1ß may decrease the deleterious effects of islet amyloid formation on beta cell function and survival.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interleucina-1beta Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Diabetologia Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interleucina-1beta Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Diabetologia Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania