Your browser doesn't support javascript.
loading
Bifurcation analysis of a phage-bacteria interaction model with prophage induction.
Ndongmo Teytsa, H M; Tsanou, B; Bowong, S; Lubuma, J M-S.
Afiliación
  • Ndongmo Teytsa HM; Department of Mathematics and Computer Science, University of Dschang, PO Box 67, Dschang, Cameroon.
  • Tsanou B; IRD UMI 209 UMMISCO, University of Yaounde I, PO Box 337, Yaounde, Cameroon and LIRIMA-EPITAG Team Project, University of Yaounde I, PO Box 812, Yaounde, Cameroon.
  • Bowong S; Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.
  • Lubuma JM; Department of Mathematics and Computer Science, University of Dschang, PO Box 67, Dschang, Cameroon.
Math Med Biol ; 38(1): 28-58, 2021 03 15.
Article en En | MEDLINE | ID: mdl-32720676
A predator-prey model is used to investigate the interactions between phages and bacteria by considering the lytic and lysogenic life cycles of phages and the prophage induction. We provide answers to the following conflictual research questions: (1) what are conditions under which the presence of phages can purify a bacterial infected environment? (2) Can the presence of phages triggers virulent bacterial outbreaks? We derive the basic offspring number $\mathcal N_0$ that serves as a threshold and the bifurcation parameter to study the dynamics and bifurcation of the system. The model exhibits three equilibria: an unstable environment-free equilibrium, a globally asymptotically stable (GAS) phage-free equilibrium (PFE) whenever $\mathcal N_0<1$, and a locally asymptotically stable environment-persistent equilibrium (EPE) when $\mathcal N_0>1$. The Lyapunov-LaSalle techniques are used to prove the GAS of the PFE and estimate the EPE basin of attraction. Through the center manifold approximation, topological types of the PFE are precised. Existence of transcritical and Hopf bifurcations are established. Precisely, when $\mathcal N_0>1$, the EPE loses its stability and periodic solutions arise. Furthermore, increasing $\mathcal N_0$ can purify an environment where bacteriophages are introduced. Purposely, we prove that for large values of $\mathcal N_0$, the overall bacterial population asymptotically approaches zero, while the phage population sustains. Ecologically, our results show that for small values of $\mathcal N_0$, the existence of periodic solutions could explain the occurrence of repetitive bacteria-borne disease outbreaks, while large value of $\mathcal N_0$ clears bacteria from the environment. Numerical simulations support our theoretical results.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Bacteriófagos / Activación Viral / Modelos Biológicos Límite: Humans Idioma: En Revista: Math Med Biol Asunto de la revista: BIOLOGIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Camerún Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Bacteriófagos / Activación Viral / Modelos Biológicos Límite: Humans Idioma: En Revista: Math Med Biol Asunto de la revista: BIOLOGIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Camerún Pais de publicación: Reino Unido