Bifurcation analysis of a phage-bacteria interaction model with prophage induction.
Math Med Biol
; 38(1): 28-58, 2021 03 15.
Article
en En
| MEDLINE
| ID: mdl-32720676
A predator-prey model is used to investigate the interactions between phages and bacteria by considering the lytic and lysogenic life cycles of phages and the prophage induction. We provide answers to the following conflictual research questions: (1) what are conditions under which the presence of phages can purify a bacterial infected environment? (2) Can the presence of phages triggers virulent bacterial outbreaks? We derive the basic offspring number $\mathcal N_0$ that serves as a threshold and the bifurcation parameter to study the dynamics and bifurcation of the system. The model exhibits three equilibria: an unstable environment-free equilibrium, a globally asymptotically stable (GAS) phage-free equilibrium (PFE) whenever $\mathcal N_0<1$, and a locally asymptotically stable environment-persistent equilibrium (EPE) when $\mathcal N_0>1$. The Lyapunov-LaSalle techniques are used to prove the GAS of the PFE and estimate the EPE basin of attraction. Through the center manifold approximation, topological types of the PFE are precised. Existence of transcritical and Hopf bifurcations are established. Precisely, when $\mathcal N_0>1$, the EPE loses its stability and periodic solutions arise. Furthermore, increasing $\mathcal N_0$ can purify an environment where bacteriophages are introduced. Purposely, we prove that for large values of $\mathcal N_0$, the overall bacterial population asymptotically approaches zero, while the phage population sustains. Ecologically, our results show that for small values of $\mathcal N_0$, the existence of periodic solutions could explain the occurrence of repetitive bacteria-borne disease outbreaks, while large value of $\mathcal N_0$ clears bacteria from the environment. Numerical simulations support our theoretical results.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Bacterias
/
Bacteriófagos
/
Activación Viral
/
Modelos Biológicos
Límite:
Humans
Idioma:
En
Revista:
Math Med Biol
Asunto de la revista:
BIOLOGIA
/
MEDICINA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Camerún
Pais de publicación:
Reino Unido