Association between residual feed intake and enteric methane emissions in Hereford steers.
Transl Anim Sci
; 3(1): 239-246, 2019 Jan.
Article
en En
| MEDLINE
| ID: mdl-32704795
The objective of this study was to quantify the emissions of enteric CH4 from growing Hereford steers raised under feedlot conditions based on contrasting levels of residual feed intake (RFI). A repeated measurements experiment was conducted over 20 d to determine CH4 production from two groups of nine Hereford steers, with contrasting RFI values (mean ± SD): low RFI (LRFI group; -0.78 ± 0.22 kg DMI/d) vs. high RFI (HRFI group; 0.83 ± 0.34 kg DMI/d). Steers were selected from a larger contemporary population in which the RFI was evaluated. Steers were maintained under confined conditions with ad libitum access to water and feed, comprising a total mixed ration of 55% sorghum silage, 21% barley silage, 21% corn grain, and 3% protein-mineral-vitamin-premix, provided twice a day. Before the beginning of CH4 measurements, the live weight of both groups of animals was determined, which on average (±SEM) was 357.0 ± 5.11 and 334.0 ± 10.17 kg in the LRFI and HRFI groups, respectively. Methane emission (g/d) was measured on each animal with the sulfur hexafluoride (SF6) tracer technique, during two consecutive periods of 5 d. Individual daily intake and feeding behavior characteristics were measured using a GrowSafe automated feeding system (Model 6000, GrowSafe Systems Ltd, Airdrie, Alberta, Canada). Methanogens in the ruminal content were quantified using quantitative polymerase chain reaction with primers targeting the mcrA gene. Methane emission was near 27% lower in animals with LRFI when expressed in absolute terms (g/d; 26.8%; P = 0.009), by unit of dry matter intake (g CH4/kg; 27.9%, P = 0.021), or as % of gross energy intake (26.7%; P = 0.027). These differences could not be explained by differences in amount of total of methanogens (average = 9.82 log10 units; P = 0.857). However, there were some differences in animal feeding behavior that could explain these differences (e.g., LRFI animals tended to spend less time in feeders). Our results suggest that, in Hereford steers, the selection by RFI values is a promising mitigation strategy for the reduction of the emission of enteric CH4.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Transl Anim Sci
Año:
2019
Tipo del documento:
Article
País de afiliación:
Uruguay
Pais de publicación:
Reino Unido