Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference.
Plant Cell Environ
; 43(11): 2812-2825, 2020 11.
Article
en En
| MEDLINE
| ID: mdl-32666553
Crop domestication and improvement often concurrently affect plant resistance to pests and production of secondary metabolites, creating challenges for isolating the ecological implications of selection for specific metabolites. Cucurbitacins are bitter triterpenoids with extreme phenotypic differences between Cucurbitaceae lineages, yet we lack integrated models of herbivore preference, cucurbitacin accumulation, and underlying genetic mechanisms. In Cucurbita pepo, we dissected the effect of cotyledon cucurbitacins on preference of a specialist insect pest (Acalymma vittatum) for multiple tissues, assessed genetic loci underlying cucurbitacin accumulation in diverse germplasm and a biparental F2 population (from a cross between two independent domesticates), and characterized quantitative associations between gene expression and metabolites during seedling development. Acalymma vittatum affinity for cotyledons is mediated by cucurbitacins, but other traits contribute to whole-plant resistance. Cotyledon cucurbitacin accumulation was associated with population structure, and our genetic mapping identified a single locus, Bi-4, containing genes relevant to transport and regulation - not biosynthesis - that diverged between lineages. These candidate genes were expressed during seedling development, most prominently a putative secondary metabolite transporter. Taken together, these findings support the testable hypothesis that breeding for plant resistance to insects involves targeting genes for regulation and transport of defensive metabolites, in addition to core biosynthesis genes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Cucurbita
/
Cucurbitacinas
/
Domesticación
/
Defensa de la Planta contra la Herbivoria
Tipo de estudio:
Prognostic_studies
Aspecto:
Patient_preference
Límite:
Animals
Idioma:
En
Revista:
Plant Cell Environ
Asunto de la revista:
BOTANICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos