Your browser doesn't support javascript.
loading
Enhancing Medical Education with Data-Driven Software: The TrainCoMorb App.
Zikos, Dimitrios; Ragina, Neli; Strong, Oliver.
Afiliación
  • Zikos D; Central Michigan University, United States.
  • Ragina N; Central Michigan University, United States.
  • Strong O; Central Michigan University, United States.
Stud Health Technol Inform ; 272: 83-86, 2020 Jun 26.
Article en En | MEDLINE | ID: mdl-32604606
Medical education can take advantage of big data to enhance the learning experience of students. This paper describes the development of TrainCoMorb, an online, data-driven application for medical students who can practice recognizing comorbidities and their attributable risk for negative outcomes. Trainees access TrainCoMorb to create scenarios of comorbidities, step-by-step, and see snapshots of the risk for inpatient death, hospital septicemia and the projected length of stay. The study utilized an enormous claims dataset (N=11m.). A dynamic Bayesian algorithm was developed, which calculates and updates conditional probabilities for the outcomes under study in each phase of an ongoing scenario. The trainee initiates a scenario by selecting demographics and a principal diagnosis, then adds chronic and hospital-acquired conditions to see a summary of the attributable risk in each phase. TrainCoMorb is anticipated to assist medical students gain a better understanding of comorbidities and their impact on clinical outcomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudiantes de Medicina / Programas Informáticos / Educación Médica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudiantes de Medicina / Programas Informáticos / Educación Médica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos