Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance.
J Hazard Mater
; 400: 123163, 2020 12 05.
Article
en En
| MEDLINE
| ID: mdl-32569985
A novel ion species-responsive oil-water separation material was designed: poly ionic liquid (PIL) was carried on the graphene oxide (GO) by free radical polymerization, then the PIL modified GO sheets (GO-PIL) were coated on cotton fabric (CF). The wettability of the obtained GO-PIL coated CF (GO-PIL@CF) could be switched between hydrophilic and hydrophobic state with the exchange of different types of counteranions. Water contact angle of the GO-PIL@CF could be switched between 0 to about 145°; and correspondingly the underwater oil contact angle would change between about 148 to 0°. Because of the switchable wettability, the GO-PIL@CF could selectively separate water or oil from the oil-water mixtures. Meanwhile, due to the loose fibrous structure, the GO-PIL@CF showed relatively high permeate fluxes; in the hydrophilic state the water flux was about 36000 L/m2h, while in the hydrophobic state the fluxes for the low-density oils (n-hexane and toluene) were about 59,000 and 65000 L/m2h, respectively. Consequently, the separation processes could be completed simply by gravity. In addition, because of the soft and flexible mechanical property, the GO-PIL@CF could serve as wrappage of traditional absorbents and be applied directly as absorbent to remove water or oil selectively from their mixtures.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Países Bajos