Your browser doesn't support javascript.
loading
Explanation of the onset of bouncing cycles in isotropic rotor dynamics; a grazing bifurcation analysis.
Mora, Karin; Champneys, Alan R; Shaw, Alexander D; Friswell, Michael I.
Afiliación
  • Mora K; Department of Mathematics, Paderborn University, 33098 Paderborn, Germany.
  • Champneys AR; Department of Engineering Mathematics, University of Bristol, BS8 1UB Bristol, UK.
  • Shaw AD; College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK.
  • Friswell MI; College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK.
Proc Math Phys Eng Sci ; 476(2237): 20190549, 2020 May.
Article en En | MEDLINE | ID: mdl-32523408
The dynamics associated with bouncing-type partial contact cycles are considered for a 2 degree-of-freedom unbalanced rotor in the rigid-stator limit. Specifically, analytical explanation is provided for a previously proposed criterion for the onset upon increasing the rotor speed Ω of single-bounce-per-period periodic motion, namely internal resonance between forward and backward whirling modes. Focusing on the cases of 2 : 1 and 3 : 2 resonances, detailed numerical results for small rotor damping reveal that stable bouncing periodic orbits, which coexist with non-contacting motion, arise just beyond the resonance speed Ω p:q . The theory of discontinuity maps is used to analyse the problem as a codimension-two degenerate grazing bifurcation in the limit of zero rotor damping and Ω = Ω p:q . An analytic unfolding of the map explains all the features of the bouncing orbits locally. In particular, for non-zero damping ζ, stable bouncing motion bifurcates in the direction of increasing Ω speed in a smooth fold bifurcation point that is at rotor speed O ( ζ ) beyond Ω p:q . The results provide the first analytic explanation of partial-contact bouncing orbits and has implications for prediction and avoidance of unwanted machine vibrations in a number of different industrial settings.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Math Phys Eng Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Math Phys Eng Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido