Your browser doesn't support javascript.
loading
Synthesis of BiPO4 by crystallization and hydroxylation with boosted photocatalytic removal of organic pollutants in air and water.
Wang, Yaxiao; Ye, Xiangju; Chen, Gongbin; Li, Danzhen; Meng, Sugang; Chen, Shifu.
Afiliación
  • Wang Y; College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, PR China.
  • Ye X; College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, PR China. Electronic address: yexiangju555@126.com.
  • Chen G; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, PR China.
  • Li D; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, PR China.
  • Meng S; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, PR China. Electronic address: mengsugang@126.com.
  • Chen S; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, PR China.
J Hazard Mater ; 399: 122999, 2020 11 15.
Article en En | MEDLINE | ID: mdl-32505984
Environmental photocatlytsis has been considered as a promising alternative strategy to address the current environmental threats and pressures. Fabrication of the photocatalysts with high efficiency, stability and bio-safety is the core of photocatalytic applications. Herein, we report a facile approach to synthesize monazite BiPO4 (SHTW) with high crystallization and hydroxylation. The wide bandgap of the SHTW can provide strong redox abilities to produce reactive species and mineralize organic pollutants. Its high crystallinity and dipole moment can promote separation and transportation of the photoexcited electron-hole pairs effectively. In addition, the hydroxylation can produce more highly oxidizing hydroxyl radicals and further improve charge carrier separation. Notably, the hydroxylation can be reborn and the high crystallization can be maintained during photocatalysis. Thus, a virtuous cycle can be established and organic pollutants can be removed efficiently. The mineralization rate of 146.1 µmol g-1 h-1 can be obtained on the SHTW for photocatalytic degradation of benzene, which is about 8.5 times higher than that of the commercial TiO2 (P25). Various dyes, dyes mixture and bisphenol A can all be completely degraded over the SHTW. It shows the potential application and value in environmental governance.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos