Your browser doesn't support javascript.
loading
Fluid-Guided CVD Growth for Large-Scale Monolayer Two-Dimensional Materials.
Zhou, Dong; Lang, Ji; Yoo, Nicholas; Unocic, Raymond R; Wu, Qianhong; Li, Bo.
Afiliación
  • Zhou D; Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States.
  • Lang J; Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States.
  • Yoo N; Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States.
  • Unocic RR; Cellular Biomechanics and Sports Science Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States.
  • Wu Q; Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States.
  • Li B; Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States.
ACS Appl Mater Interfaces ; 12(23): 26342-26349, 2020 Jun 10.
Article en En | MEDLINE | ID: mdl-32420727
Atmospheric pressure chemical vapor deposition (APCVD) has been used extensively for synthesizing two-dimensional (2D) materials because of its low cost and promise for high-quality monolayer crystal synthesis. However, the understanding of the reaction mechanism and the key parameters affecting the APCVD processes is still in its embryonic stage. Hence, the scalability of the APCVD method in achieving large-scale continuous film remains very poor. Here, we use MoSe2 as a model system and present a fluid guided growth strategy for understanding and controlling the growth of 2D materials. Through the integration of experiment and computational fluid dynamics (CFD) analysis in the full-reactor scale, we identified three key parameters, precursor mixing, fluid velocity, and shear stress, which play a critical role in the APCVD process. By modifying the geometry of the growth setup to enhance precursor mixing and decrease nearby velocity shear rate and adjusting flow direction, we have successfully obtained inch-scale monolayer MoSe2. This unprecedented success of achieving scalable 2D materials through fluidic design lays the foundation for designing new CVD systems to achieve the scalable synthesis of nanomaterials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos