Your browser doesn't support javascript.
loading
Machine Learning-Based Classification of Vector Vortex Beams.
Giordani, Taira; Suprano, Alessia; Polino, Emanuele; Acanfora, Francesca; Innocenti, Luca; Ferraro, Alessandro; Paternostro, Mauro; Spagnolo, Nicolò; Sciarrino, Fabio.
Afiliación
  • Giordani T; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  • Suprano A; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  • Polino E; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  • Acanfora F; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  • Innocenti L; Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom.
  • Ferraro A; Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom.
  • Paternostro M; Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, United Kingdom.
  • Spagnolo N; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  • Sciarrino F; Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
Phys Rev Lett ; 124(16): 160401, 2020 Apr 24.
Article en En | MEDLINE | ID: mdl-32383956
Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos