Your browser doesn't support javascript.
loading
X-ray diffraction at the National Ignition Facility.
Rygg, J R; Smith, R F; Lazicki, A E; Braun, D G; Fratanduono, D E; Kraus, R G; McNaney, J M; Swift, D C; Wehrenberg, C E; Coppari, F; Ahmed, M F; Barrios, M A; Blobaum, K J M; Collins, G W; Cook, A L; Di Nicola, P; Dzenitis, E G; Gonzales, S; Heidl, B F; Hohenberger, M; House, A; Izumi, N; Kalantar, D H; Khan, S F; Kohut, T R; Kumar, C; Masters, N D; Polsin, D N; Regan, S P; Smith, C A; Vignes, R M; Wall, M A; Ward, J; Wark, J S; Zobrist, T L; Arsenlis, A; Eggert, J H.
Afiliación
  • Rygg JR; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Smith RF; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Lazicki AE; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Braun DG; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Fratanduono DE; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Kraus RG; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • McNaney JM; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Swift DC; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Wehrenberg CE; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Coppari F; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Ahmed MF; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Barrios MA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Blobaum KJM; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Collins GW; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Cook AL; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Di Nicola P; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Dzenitis EG; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Gonzales S; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Heidl BF; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Hohenberger M; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • House A; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Izumi N; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Kalantar DH; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Khan SF; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Kohut TR; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Kumar C; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Masters ND; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Polsin DN; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Regan SP; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Smith CA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Vignes RM; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Wall MA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Ward J; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Wark JS; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Zobrist TL; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Arsenlis A; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Eggert JH; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
Rev Sci Instrum ; 91(4): 043902, 2020 Apr 01.
Article en En | MEDLINE | ID: mdl-32357733
We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2-7 on the periodic table.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos