Your browser doesn't support javascript.
loading
Elucidating the 1H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen Using Measurements, MD Simulations, and Models.
Singer, Philip M; Valiya Parambathu, Arjun; Wang, Xinglin; Asthagiri, Dilip; Chapman, Walter G; Hirasaki, George J; Fleury, Marc.
Afiliación
  • Singer PM; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Valiya Parambathu A; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Wang X; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Asthagiri D; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Chapman WG; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Hirasaki GJ; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
  • Fleury M; IFP Energies nouvelles, 1 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
J Phys Chem B ; 124(20): 4222-4233, 2020 05 21.
Article en En | MEDLINE | ID: mdl-32356986
The mechanism behind the 1H nuclear magnetic resonance (NMR) frequency dependence of T1 and the viscosity dependence of T2 for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies (f0 = 0.01-400 MHz) and viscosities (η = 385-102 000 cP) using T1 and T2 in static fields, T1 field-cycling relaxometry, and T1ρ in the rotating frame. We account for the anomalous behavior of the log-mean relaxation times T1LM ∝ f0 and T2LM ∝ (η/T)-1/2 with a phenomenological model of 1H-1H dipole-dipole relaxation, which includes a distribution in molecular correlation times and internal motions of the nonrigid polymer branches. We show that the model also accounts for the anomalous T1LM and T2LM in previously reported bitumen measurements. We find that molecular dynamics (MD) simulations of the T1 ∝ f0 dispersion and T2 of similar polymers simulated over a range of viscosities (η = 1-1000 cP) are in good agreement with measurements and the model. The T1 ∝ f0 dispersion at high viscosities agrees with previously reported MD simulations of heptane confined in a polymer matrix, which suggests a common NMR relaxation mechanism between viscous polydisperse fluids and fluids under nanoconfinement, without the need to invoke paramagnetism.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos