RARE two-point Dixon with dual bandwidths.
Magn Reson Med
; 84(5): 2456-2468, 2020 11.
Article
en En
| MEDLINE
| ID: mdl-32333472
PURPOSE: To investigate the impact of dual readout bandwidths (dBW) in a dual echo fat/water acquisition and describe a dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence where the concept is used to improve SNR by removing dead times between refocusing pulses and avoiding redundant Chemical-shift encoded. METHODS: Cramér-Rao bounds and Monte Carlo simulations were used to investigate a two-point fat/water model where the difference in bandwidths is incorporated. In vivo images were acquired at 1.5 and 3 T with the dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence. Typical bandwidth ratios were 1:2. SNR was compared with a single bandwidth sequence under identical scan parameters at 3T. RESULTS: Monte Carlo simulations and Cramér-Rao analysis demonstrate that number of signal averages can be improved with dual bandwidths compared to conventional single bandwidth acquisitions. The dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence can acquire images with high readout resolutions with well-conditioned sampling. An SNR improvement of 52% was measured, in line with the theoretical gain of 54%. CONCLUSIONS: The proposed dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence is a highly SNR-efficient two-point rapid acquisition relaxation enhanced, or turbo spin echo sequence without dead times, and can acquire images at higher resolutions than current vendor-supplied alternatives.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Imagen por Resonancia Magnética
/
Aumento de la Imagen
Tipo de estudio:
Health_economic_evaluation
Idioma:
En
Revista:
Magn Reson Med
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2020
Tipo del documento:
Article
País de afiliación:
Suecia
Pais de publicación:
Estados Unidos