Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal-Organic Framework Enabled by Energy Transfer.
J Am Chem Soc
; 142(19): 9048-9056, 2020 May 13.
Article
en En
| MEDLINE
| ID: mdl-32324391
The visible-light-driven rotation of an overcrowded alkene-based molecular motor strut in a dual-function metal-organic framework (MOF) is reported. Two types of functional linkers, a palladium-porphyrin photosensitizer and a bispyridine-derived molecular motor, were used to construct the framework capable of harvesting low-energy green light to power the rotary motion. The molecular motor was introduced in the framework using the postsynthetic solvent-assisted linker exchange (SALE) method, and the structure of the material was confirmed by powder (PXRD) and single-crystal X-ray (SC-XRD) diffraction. The large decrease in the phosphorescence lifetime and intensity of the porphyrin in the MOFs upon introduction of the molecular motor pillars confirms efficient triplet-to-triplet energy transfer between the porphyrin linkers and the molecular motor. Near-infrared Raman spectroscopy revealed that the visible light-driven rotation of the molecular motor proceeds in the solid state at rates similar to those observed in solution.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2020
Tipo del documento:
Article
País de afiliación:
Países Bajos
Pais de publicación:
Estados Unidos