Your browser doesn't support javascript.
loading
DRAMS: A tool to detect and re-align mixed-up samples for integrative studies of multi-omics data.
Jiang, Yi; Giase, Gina; Grennan, Kay; Shieh, Annie W; Xia, Yan; Han, Lide; Wang, Quan; Wei, Qiang; Chen, Rui; Liu, Sihan; White, Kevin P; Chen, Chao; Li, Bingshan; Liu, Chunyu.
Afiliación
  • Jiang Y; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
  • Giase G; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.
  • Grennan K; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
  • Shieh AW; School of Public Health, University of Illinois at Chicago, Chicago, Illinois, United States of America.
  • Xia Y; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, United States of America.
  • Han L; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, United States of America.
  • Wang Q; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
  • Wei Q; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, United States of America.
  • Chen R; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
  • Liu S; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.
  • White KP; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
  • Chen C; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.
  • Li B; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
  • Liu C; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.
PLoS Comput Biol ; 16(4): e1007522, 2020 04.
Article en En | MEDLINE | ID: mdl-32282793
Studies of complex disorders benefit from integrative analyses of multiple omics data. Yet, sample mix-ups frequently occur in multi-omics studies, weakening statistical power and risking false findings. Accurately aligning sample information, genotype, and corresponding omics data is critical for integrative analyses. We developed DRAMS (https://github.com/Yi-Jiang/DRAMS) to Detect and Re-Align Mixed-up Samples to address the sample mix-up problem. It uses a logistic regression model followed by a modified topological sorting algorithm to identify the potential true IDs based on data relationships of multi-omics. According to tests using simulated data, the more types of omics data used or the smaller the proportion of mix-ups, the better that DRAMS performs. Applying DRAMS to real data from the PsychENCODE BrainGVEX project, we detected and corrected 201 (12.5% of total data generated) mix-ups. Of the 21 mix-ups involving errors of racial identity, DRAMS re-assigned all data to the correct racial group in the 1000 Genomes project. In doing so, quantitative trait loci (QTL) (FDR<0.01) increased by an average of 1.62-fold. The use of DRAMS in multi-omics studies will strengthen statistical power of the study and improve quality of the results. Even though very limited studies have multi-omics data in place, we expect such data will increase quickly with the needs of DRAMS.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Polimorfismo de Nucleótido Simple / Genómica / Lóbulo Frontal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Polimorfismo de Nucleótido Simple / Genómica / Lóbulo Frontal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos