Direct observation of nuclear reorganization driven by ultrafast spin transitions.
Nat Commun
; 11(1): 1530, 2020 Mar 23.
Article
en En
| MEDLINE
| ID: mdl-32251278
One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe-N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido