Your browser doesn't support javascript.
loading
Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering.
Wang, Mingkang; Zhang, Rui; Ilic, Robert; Aksyuk, Vladimir; Liu, Yuxiang.
Afiliación
  • Wang M; Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 United States.
  • Zhang R; Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States.
  • Ilic R; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 United States.
  • Aksyuk V; Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 United States.
  • Liu Y; Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 United States.
Nano Lett ; 20(5): 3050-3057, 2020 May 13.
Article en En | MEDLINE | ID: mdl-32250636
Microfabricated mechanical resonators enable precision measurement techniques from atomic force microscopy to emerging quantum applications. The resonance frequency-based physical sensing combines high precision with long-term stability. However, widely used Si3N4 resonators suffer from frequency sensitivity to temperature due to the differential thermal expansion vs the Si substrates. Here we experimentally demonstrate temperature- and residual stress-insensitive 16.51 MHz tuning fork nanobeam resonators with nonlinear clamps defining the stress and frequency by design, achieving a low fractional frequency sensitivity of (2.5 ± 0.8) × 10-6 K-1, a 72× reduction. On-chip optical readout of resonator thermomechanical fluctuations allows precision frequency measurement without any external excitation at the thermodynamically limited frequency Allan deviation of ≈7 Hz/Hz1/2 and (relative) bias stability of ≈10 Hz (≈ 0.6 × 10-6) above 1 s averaging, remarkably, on par with state-of-the-art driven devices of similar mass. Both the resonator stabilization and the passive frequency readout can benefit a wide variety of micromechanical sensors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos