Your browser doesn't support javascript.
loading
Temperature determines the rate at which retene affects trout embryos, not the concentration that is toxic.
Honkanen, Jani O; Rees, Christopher B; Kukkonen, Jussi V K; Hodson, Peter V.
Afiliación
  • Honkanen JO; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
  • Rees CB; University of Wisconsin-Milwaukee, Great Lakes WATER Institute, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
  • Kukkonen JVK; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
  • Hodson PV; School of Environmental Studies, Queen's University, K7L 3N6, ON, Canada. Electronic address: peter.hodson@queensu.ca.
Aquat Toxicol ; 222: 105471, 2020 May.
Article en En | MEDLINE | ID: mdl-32199139
The toxicity of waterborne retene (7-isopropyl-1-methyl phenanthrene) to post-hatch embryos of rainbow trout (Oncorhynchus mykiss) was assessed at 5 and 11 °C. Survival times of retene-exposed embryos were 70 % longer at 5 °C than at 11 °C, but survival times and LC50 s did not vary when time was expressed as degree-days (thermal units), i.e., at a common stage of development. The size of survivors decreased with increasing retene concentrations, but not with temperature. Retene did not bioconcentrate to any extent (bioconcentration factors < 2) at either temperature, indicating effective biotransformation by embryos. However, concentrations of retene metabolites were slightly higher at 5 °C, suggesting slower excretion rates than at 11 °C. The relative expression of cytochrome P450 proteins (CYP1A) did not vary with temperature but increased with retene concentration, as indicated by cyp1a mRNA concentrations. The induction of CYP1A protein by retene exposure was evident in the vasculature of eye, brain, heart, kidney, liver, gill, mouth, intestine, muscle, and yolk-sac. However, immunohistochemical staining was greater at 5 than at 11 °C for all tissues except liver and muscle. Overall, temperature effects on retene toxicity disappeared when the duration of embryo development and retene exposure were expressed as thermal units (degree-days). Temperature controlled the rate of embryo development and the rate of toxicity (time to a toxic endpoint), but not the concentrations that were toxic.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenantrenos / Temperatura / Contaminantes Químicos del Agua / Oncorhynchus mykiss / Desarrollo Embrionario / Embrión no Mamífero Límite: Animals Idioma: En Revista: Aquat Toxicol Asunto de la revista: BIOLOGIA / TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenantrenos / Temperatura / Contaminantes Químicos del Agua / Oncorhynchus mykiss / Desarrollo Embrionario / Embrión no Mamífero Límite: Animals Idioma: En Revista: Aquat Toxicol Asunto de la revista: BIOLOGIA / TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Países Bajos