Your browser doesn't support javascript.
loading
Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
Keeling, Jonathan; Kéna-Cohen, Stéphane.
Afiliación
  • Keeling J; Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom; email: jmjk@st-andrews.ac.uk.
  • Kéna-Cohen S; Department of Engineering Physics, École Polytechnique de Montréal, Montréal H3T 1J4, Canada; email: stephane.kena-cohen@polymtl.ca.
Annu Rev Phys Chem ; 71: 435-459, 2020 Apr 20.
Article en En | MEDLINE | ID: mdl-32126177
Bose-Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose-Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Annu Rev Phys Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Annu Rev Phys Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos