Your browser doesn't support javascript.
loading
Batch-Mode Clinical-Scale Optical Hyperpolarization of Xenon-129 Using an Aluminum Jacket with Rapid Temperature Ramping.
Birchall, Jonathan R; Nikolaou, Panayiotis; Coffey, Aaron M; Kidd, Bryce E; Murphy, Megan; Molway, Michael; Bales, Liana B; Goodson, Boyd M; Irwin, Robert K; Barlow, Michael J; Chekmenev, Eduard Y.
Afiliación
  • Birchall JR; Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.
  • Nikolaou P; XeUS Technologies LTD, Nicosia 2312, Cyprus.
  • Coffey AM; Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232, United States.
  • Irwin RK; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
  • Barlow MJ; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
  • Chekmenev EY; Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.
Anal Chem ; 92(6): 4309-4316, 2020 03 17.
Article en En | MEDLINE | ID: mdl-32073251
We present spin-exchange optical pumping (SEOP) using a third-generation (GEN-3) automated batch-mode clinical-scale 129Xe hyperpolarizer utilizing continuous high-power (∼170 W) pump laser irradiation and a novel aluminum jacket design for rapid temperature ramping of xenon-rich gas mixtures (up to 2 atm partial pressure). The aluminum jacket design is capable of heating SEOP cells from ambient temperature (typically 25 °C) to 70 °C (temperature of the SEOP process) in 4 min, and perform cooling of the cell to the temperature at which the hyperpolarized gas mixture can be released from the hyperpolarizer (with negligible amounts of Rb metal leaving the cell) in approximately 4 min, substantially faster (by a factor of 6) than previous hyperpolarizer designs relying on air heat exchange. These reductions in temperature cycling time will likely be highly advantageous for the overall increase of production rates of batch-mode (i.e., stopped-flow) 129Xe hyperpolarizers, which is particularly beneficial for clinical applications. The additional advantage of the presented design is significantly improved thermal management of the SEOP cell. Accompanying the heating jacket design and performance, we also evaluate the repeatability of SEOP experiments conducted using this new architecture, and present typically achievable hyperpolarization levels exceeding 40% at exponential build-up rates on the order of 0.1 min-1.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos