Your browser doesn't support javascript.
loading
Oxygen-Embedded Pentacene Based Near-Infrared Chemiluminescent Nanoprobe for Highly Selective and Sensitive Visualization of Peroxynitrite In Vivo.
Wang, Bingzhe; Wang, Youjuan; Wang, Yanpei; Zhao, Yan; Yang, Chan; Zeng, Zebing; Huan, Shuangyan; Song, Guosheng; Zhang, Xiaobing.
Afiliación
  • Wang B; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Wang Y; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Wang Y; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Zhao Y; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Yang C; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Zeng Z; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Huan S; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Song G; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
  • Zhang X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic
Anal Chem ; 92(5): 4154-4163, 2020 03 03.
Article en En | MEDLINE | ID: mdl-32050763
Peroxynitrite (ONOO-) is involved in neurodegenerative, inflammatory, cardiovascular disorders, cancers, and other pathological progress. However, current imaging methods for sensing ONOO- usually suffer from high background/autofluorescence for fluorescent probes and poor selectivity/short emission wavelength for chemiluminescent probes. Herein, we present a novel chemiluminescent molecule (oxygen-embedded quinoidal pentacene) responsive to ONOO- for the first time, on the basis of which we rationally construct a near-infrared nanoprobe for detecting ONOO- via chemiluminescence resonance energy transfer (CRET) mechanism. Notably, our nanoprobe exhibits good selectivity, ultrahigh sensitivity (nanomole level), low background noise, fast response, and high water solubility. Moreover, the near-infrared emission from CRET offers higher tissue penetration of the chemiluminescent signal. Finally, our nanoprobe is further successfully applied to detecting endogenous ONOO- in mice with abdominal inflammation, drug-induced hepatotoxicity, or tumor models in vivo. In summary, the self-luminescing nanoprobes can act as an alternative visualizable tool for illuminating the mechanism of ONOO- involved in the specific pathological process.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Ácido Peroxinitroso / Colorantes Fluorescentes / Mediciones Luminiscentes / Naftacenos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Ácido Peroxinitroso / Colorantes Fluorescentes / Mediciones Luminiscentes / Naftacenos Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos