Synergetic Improvement of Stability and Conductivity of Hybrid Composites formed by PEDOT:PSS and SnO Nanoparticles.
Molecules
; 25(3)2020 Feb 06.
Article
en En
| MEDLINE
| ID: mdl-32041230
In this work, layered hybrid composites formed by tin oxide (SnO) nanoparticles synthesized by hydrolysis and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) have been analyzed. Prior to the composite study, both SnO and PEDOT:PSS counterparts were characterized by diverse techniques, such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), photoluminescence (PL), atomic force microscopy (AFM), optical absorption and Hall effect measurements. Special attention was given to the study of the stability of the polymer under laser illumination, as well as the analysis of the SnO to SnO2 oxidation assisted by laser irradiation, for which different laser sources and neutral filters were employed. Synergetic effects were observed in the hybrid composite, as the addition of SnO nanoparticles improves the stability and electrical conductivity of the polymer, while the polymeric matrix in which the nanoparticles are embedded hinders formation of SnO2. Finally, the Si passivation behavior of the hybrid composites was studied.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Polímeros
/
Poliestirenos
/
Compuestos de Estaño
/
Compuestos Bicíclicos Heterocíclicos con Puentes
/
Nanopartículas
Idioma:
En
Revista:
Molecules
Asunto de la revista:
BIOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
España
Pais de publicación:
Suiza