An improved fuzzy set-based multifactor dimensionality reduction for detecting epistasis.
Artif Intell Med
; 102: 101768, 2020 01.
Article
en En
| MEDLINE
| ID: mdl-31980105
OBJECTIVE: Epistasis identification is critical for determining susceptibility to human genetic diseases. The rapid development of technology has enabled scalability to make multifactor dimensionality reduction (MDR) measurements an effective calculation tool that achieves superior detection. However, the classification of high-risk (H) or low-risk (L) groups in multidrug resistance operations calls for extensive research. METHODS AND MATERIAL: In this study, an improved fuzzy sigmoid (FS) method using the membership degree in MDR (FSMDR) was proposed for solving the limitations of binary classification. The FS method combined with MDR measurements yielded an improved ability to distinguish similar frequencies of potential multifactor genotypes. RESULTS: We compared our results with other MDR-based methods and FSMDR achieved superior detection rates on simulated data sets. The results indicated that the fuzzy classifications can provide insight into the uncertainty of H/L classification in MDR operation. CONCLUSION: FSMDR successfully detected significant epistasis of coronary artery disease in the Wellcome Trust Case Control Consortium data set.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Lógica Difusa
/
Epistasis Genética
/
Reducción de Dimensionalidad Multifactorial
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Artif Intell Med
Asunto de la revista:
INFORMATICA MEDICA
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Países Bajos