Your browser doesn't support javascript.
loading
Multiplexed Assembly of Plasmonic Nanostructures Through Charge Inversion on Substrate for Surface Encoding.
Wang, Yawen; Li, Dong; Sun, Yinghui; Zhong, Liubiao; Liang, Wenkai; Qin, Wei; Guo, Wei; Liang, Zhiqiang; Jiang, Lin.
Afiliación
  • Wang Y; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Li D; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Sun Y; College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China.
  • Zhong L; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Liang W; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Qin W; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Guo W; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Liang Z; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
  • Jiang L; Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
ACS Appl Mater Interfaces ; 12(5): 6176-6182, 2020 Feb 05.
Article en En | MEDLINE | ID: mdl-31927912
Plasmonic nanomaterials are excellent and promising building blocks for information encoding and decoding. However, the positioning of multiplexed nanomaterials into recognizable structures remains a major challenge in nanotechnology. Herein, we developed a novel method for fabricating diversified nanostructures through surface charge inversion from amino-modified substrates to carboxyl-modified ones, as well as the corresponding electrostatic-induced assembly of metal nanoparticles. Under optimal conditions, the selected gold nanospheres (NSs) and peanut-like gold nanorods were successively located into patterns of spaced lines on the same substrate. Due to their unique optical properties, these two types of designed nanoarrays exhibited distinct color contrast and spectrum difference under dark-field scattering microscopy. Furthermore, this general strategy can be extended to wide ranges of nanoparticles with different morphologies and compositions for other multifunctional and high-demanding encoding applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos