Multiplexed Assembly of Plasmonic Nanostructures Through Charge Inversion on Substrate for Surface Encoding.
ACS Appl Mater Interfaces
; 12(5): 6176-6182, 2020 Feb 05.
Article
en En
| MEDLINE
| ID: mdl-31927912
Plasmonic nanomaterials are excellent and promising building blocks for information encoding and decoding. However, the positioning of multiplexed nanomaterials into recognizable structures remains a major challenge in nanotechnology. Herein, we developed a novel method for fabricating diversified nanostructures through surface charge inversion from amino-modified substrates to carboxyl-modified ones, as well as the corresponding electrostatic-induced assembly of metal nanoparticles. Under optimal conditions, the selected gold nanospheres (NSs) and peanut-like gold nanorods were successively located into patterns of spaced lines on the same substrate. Due to their unique optical properties, these two types of designed nanoarrays exhibited distinct color contrast and spectrum difference under dark-field scattering microscopy. Furthermore, this general strategy can be extended to wide ranges of nanoparticles with different morphologies and compositions for other multifunctional and high-demanding encoding applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos