Your browser doesn't support javascript.
loading
Deciphering the Symbiotic Significance of Quorum Sensing Systems of Sinorhizobium fredii HH103.
Acosta-Jurado, Sebastián; Alías-Villegas, Cynthia; Almozara, Andrés; Espuny, M Rosario; Vinardell, José-María; Pérez-Montaño, Francisco.
Afiliación
  • Acosta-Jurado S; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
  • Alías-Villegas C; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
  • Almozara A; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
  • Espuny MR; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
  • Vinardell JM; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
  • Pérez-Montaño F; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
Microorganisms ; 8(1)2020 Jan 02.
Article en En | MEDLINE | ID: mdl-31906451
Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs). In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes reveal also the presence of both QS systems. In this manuscript we characterized the QS systems of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible of the production of short- and long-chain AHLs, respectively, at very low and not physiological concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain the DNA-binding motives, may control target genes in an AHL-independent manner. The presence of a split traR gene is common in other S. fredii strains.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2020 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2020 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza