Interleaflet coupling of n-alkane incorporated bilayers.
Phys Chem Chem Phys
; 22(10): 5418-5426, 2020 Mar 14.
Article
en En
| MEDLINE
| ID: mdl-31904060
The relationship between the membrane bending modulus (κ) and compressibility modulus (KA) depends on the extent of coupling between the two monolayers (leaflets). Using neutron spin echo (NSE) spectroscopy, we investigate the effects of n-alkanes on the interleaflet coupling of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Structural studies with small-angle X-ray and neutron scattering (SAXS and SANS) showed that the bilayer thickness increased with increasing n-alkane length, while NSE suggested that the bilayers became softer. Additional measurements of the membrane thickness fluctuations with NSE suggested that the changes in elastic moduli were due to a decrease in coupling between the leaflets upon addition of the longer n-alkanes. The decreased coupling with elongating n-alkane length was explained based on the n-alkane distribution within the bilayers characterized by SANS measurement of bilayers composed of protiated DPPC and deuterated n-alkanes. A higher fraction of the incorporated long n-alkanes were concentrated at the central plane of the bilayers and decreased the physical interaction between the leaflets. Using NSE and SANS, we successfully correlated changes in the mesoscopic collective dynamics and microscopic membrane structure upon incorporation of n-alkanes.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Reino Unido