Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?
Philos Trans A Math Phys Eng Sci
; 378(2165): 20180423, 2020 Feb 21.
Article
en En
| MEDLINE
| ID: mdl-31902337
Ultramafic rocks undergo successive stages of hydration and oxidation during water/rock interaction, giving rise to secondary minerals such as brucite, serpentine, magnetite and the production of H2(g). Ferroan brucite (MgxFe(1-x)2+(OH)2) often forms under low water/rock ratios early during the 'serpentinization' process. The formation of ferroan brucite sequesters Fe(II) and suppresses the production of H2, thereby limiting the flux of reductants suitable for sustaining microbial metabolism. Yet ferroan brucite is a relatively soluble mineral 'reservoir' for reactive Fe(II). Brucite is often metastable and can be lost at later stages of peridotite hydration when there is a significant increase in the water/rock ratio or the activity of SiO2 or CO2. The Fe(OH)2 component of brucite has the thermodynamic potential to reduce most aqueous oxidants. Therefore, ferroan brucite may reduce water and/or dissolved carbon, nitrogen and sulfur species, while the Fe(II) is converted into more stable secondary minerals such as Fe(II/III)-oxides and hydroxides (e.g. green-rust, magnetite, iowaite and pyroaurite) and ferric serpentine. The reactivity of ferroan brucite, and the associated rate of Fe solubilization and oxidation in subsurface fluids, could be a key regulator on the rate of electron transfer from serpentinites to the rock-hosted biosphere. Aqueous alteration of ferroan brucite may significantly modulate the H2 activity in fluids circulating within partially serpentinized rocks, and buffer H2 as it is lost by advection or in situ consumption by a hydrogenotrophic microbial community. Moreover, there may be microbial organisms that specifically colonize and use ferroan brucite as an electron donor for their metabolism. The energy fluxes sustained by localized brucite oxidation may often be sufficiently large to sustain abundant microbial communities; water/rock reaction zones where brucite is consumed could serve as environments to search for extant or fossil serpentinite-hosted life. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ecosistema
/
Hierro
/
Hidróxido de Magnesio
/
Microbiología
/
Minerales
Idioma:
En
Revista:
Philos Trans A Math Phys Eng Sci
Asunto de la revista:
BIOFISICA
/
ENGENHARIA BIOMEDICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido