Your browser doesn't support javascript.
loading
Assessing NO2 Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging.
Di, Qian; Amini, Heresh; Shi, Liuhua; Kloog, Itai; Silvern, Rachel; Kelly, James; Sabath, M Benjamin; Choirat, Christine; Koutrakis, Petros; Lyapustin, Alexei; Wang, Yujie; Mickley, Loretta J; Schwartz, Joel.
Afiliación
  • Di Q; Research Center for Public Health , Tsinghua University , Beijing , China , 100084.
  • Amini H; Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.
  • Shi L; Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.
  • Kloog I; Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.
  • Silvern R; Department of Environmental Health, Rollins School of Public Health , Emory University , Atlanta Georgia 30322 , United States.
  • Kelly J; Department of Geography and Environmental Development , Ben-Gurion University of the Negevy , Beer Sheva , Israel , P.O. Box 653.
  • Sabath MB; Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.
  • Choirat C; U.S. Environmental Protection Agency , Office of Air Quality Planning & Standards , Research Triangle Park , North Carolina 27711 , United States.
  • Koutrakis P; Department of Biostatistics , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02115 , United States.
  • Lyapustin A; Department of Biostatistics , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02115 , United States.
  • Wang Y; Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.
  • Mickley LJ; NASA Goddard Space Flight Center , Greenbelt , Maryland 20771 , United States.
  • Schwartz J; University of Maryland , Baltimore County , Baltimore , Maryland 21250 , United States.
Environ Sci Technol ; 54(3): 1372-1384, 2020 02 04.
Article en En | MEDLINE | ID: mdl-31851499
NO2 is a combustion byproduct that has been associated with multiple adverse health outcomes. To assess NO2 levels with high accuracy, we propose the use of an ensemble model to integrate multiple machine learning algorithms, including neural network, random forest, and gradient boosting, with a variety of predictor variables, including chemical transport models. This NO2 model covers the entire contiguous U.S. with daily predictions on 1-km-level grid cells from 2000 to 2016. The ensemble produced a cross-validated R2 of 0.788 overall, a spatial R2 of 0.844, and a temporal R2 of 0.729. The relationship between daily monitored and predicted NO2 is almost linear. We also estimated the associated monthly uncertainty level for the predictions and address-specific NO2 levels. This NO2 estimation has a very high spatiotemporal resolution and allows the examination of the health effects of NO2 in unmonitored areas. We found the highest NO2 levels along highways and in cities. We also observed that nationwide NO2 levels declined in early years and stagnated after 2007, in contrast to the trend at monitoring sites in urban areas, where the decline continued. Our research indicates that the integration of different predictor variables and fitting algorithms can achieve an improved air pollution modeling framework.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: Environ Sci Technol Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: Environ Sci Technol Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos