Your browser doesn't support javascript.
loading
Microbial communities from Arctic marine sediments respond slowly to methane addition during ex situ enrichments.
Klasek, Scott; Torres, Marta E; Bartlett, Douglas H; Tyler, Madeline; Hong, Wei-Li; Colwell, Frederick.
Afiliación
  • Klasek S; Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
  • Torres ME; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA.
  • Bartlett DH; Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California, 92093-0202, USA.
  • Tyler M; Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
  • Hong WL; Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), Department of Geosciences, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
  • Colwell F; Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
Environ Microbiol ; 22(5): 1829-1846, 2020 05.
Article en En | MEDLINE | ID: mdl-31840312
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sulfatos / Archaea / Sedimentos Geológicos / Metano País/Región como asunto: Europa Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sulfatos / Archaea / Sedimentos Geológicos / Metano País/Región como asunto: Europa Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido