Your browser doesn't support javascript.
loading
Nonequilibrium Structural Evolution of Q-Carbon and Interfaces.
Sachan, Ritesh; Gupta, Siddharth; Narayan, Jagdish.
Afiliación
  • Sachan R; School of Mechanical and Aerospace Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States.
  • Gupta S; Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States.
  • Narayan J; Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States.
ACS Appl Mater Interfaces ; 12(1): 1330-1338, 2020 Jan 08.
Article en En | MEDLINE | ID: mdl-31833353
Q-carbon is a densely packed metastable phase of carbon formed by ultrafast quenching of carbon melt in a super-undercooled state. After quenching, diamond tetrahedra are randomly packed with >80% packing efficiency. This discovery has opened a pathway to fabricate various interesting heterostructures following the highly nonequilibrium route of nanosecond pulsed laser annealing. In the present work, we demonstrate the evolution of Q-carbon/α-carbon and Q-carbon/diamond heterostructures with atomically sharp interfaces, controlled via varying solidification rates of the undercooled C melt. This structure consists of ultrahard Q-carbon (∼80% sp3 and rest sp2) with an overlayer of soft α-carbon (∼40% sp3) on the inert c-Al2O3 substrate. Using high-resolution scanning transmission electron microscopy and Raman spectroscopy analysis, we present the formation of the highly dense Q-carbon/α-carbon bilayer structure with distinctly different atomic and electronic structures. The laser-solid interaction simulations coupled with atomistic ab initio modeling further confirm the conversion of C melt into Q-carbon by achieving maximum undercooling near the substrate and further into α-carbon with a decrease in regrowth velocity (<6 m/s) away from the substrate. We present details of the evolution of heterointerfaces formed from carbon melt for designing heterostructures far from equilibrium for various functional applications by using pulsed laser processing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos