Your browser doesn't support javascript.
loading
Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different-A modelling approach.
Muñoz-Tamayo, Rafael; Popova, Milka; Tillier, Maxence; Morgavi, Diego P; Morel, Jean-Pierre; Fonty, Gérard; Morel-Desrosiers, Nicole.
Afiliación
  • Muñoz-Tamayo R; UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France.
  • Popova M; Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France.
  • Tillier M; Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France.
  • Morgavi DP; Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France.
  • Morel JP; Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France.
  • Fonty G; Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France.
  • Morel-Desrosiers N; Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France.
PLoS One ; 14(12): e0226243, 2019.
Article en En | MEDLINE | ID: mdl-31826000
Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Methanobacterium / Intestinos / Metano / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Methanobacterium / Intestinos / Metano / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos