Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation.
Int J Biol Macromol
; 146: 627-637, 2020 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-31805327
The biomaterials with excellent biocompatibility and biodegradability ¬can lead to satisfactory wound healing. In this study, core-shell structured PU (polyurethane)/St (Starch) and PU/St (Hyaluronic Acid (HA)) nanofibers were fabricated with coaxial electrospinning technique. The morphology characterization of the core-shell structure of nanofibers was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Contact-angle measurements were confirmed the core/shell structure of the electrospun nanofibers with shell and core feed rates of 0.675 L/min and <0.135 L/min, respectively. The average fiber diameter values were calculated for polyurethane nanofibers (836 ± 172.13 nm), PU/St nanofibers (612 ± 93.21 nm) and PU/St (HA) nanofibers (428 ± 78.32 nm). The average porosity values of scaffolds were determined for PU (1.251 ± 0.235 µm), PU/St (1.734 ± 0.284 µm) and PU/St (HA) (3.186 ± 0.401 µm). The core-shell PU/St and PU/St (HA) nanofibers were evaluated in vitro by using mouse fibroblasts (L929) cells. Cell morphology and viability results were exhibited significant enhancement in cell promoting and cell attachment. Furthermore, in vivo studies was indicated Core-shell PU/St (HA) wound dressing can be an appropriate candidate for skin tissue engineering and wound healing.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Poliuretanos
/
Piel
/
Almidón
/
Ingeniería de Tejidos
/
Nanofibras
/
Ácido Hialurónico
Límite:
Animals
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2020
Tipo del documento:
Article
País de afiliación:
Irán
Pais de publicación:
Países Bajos