Your browser doesn't support javascript.
loading
Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth.
Knapp, Benjamin D; Odermatt, Pascal; Rojas, Enrique R; Cheng, Wenpeng; He, Xiangwei; Huang, Kerwyn Casey; Chang, Fred.
Afiliación
  • Knapp BD; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA.
  • Odermatt P; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
  • Rojas ER; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Cheng W; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China.
  • He X; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China.
  • Huang KC; Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 941586,
  • Chang F; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address: fred.chang@ucsf.edu.
Cell Syst ; 9(5): 434-445.e6, 2019 11 27.
Article en En | MEDLINE | ID: mdl-31706948
Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of "supergrowth" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Schizosaccharomyces / Proliferación Celular / Proteostasis Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Syst Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Schizosaccharomyces / Proliferación Celular / Proteostasis Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Syst Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos