Your browser doesn't support javascript.
loading
Exploration of the influence of surface proteins on the probiotic activity of Lactobacillus pentosus HC-2 in the Litopenaeus vannamei midgut via label-free quantitative proteomic analysis.
Du, Yang; Fang, Han; Shao, Xuqing; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Wang, Baojie; Wang, Lei.
Afiliación
  • Du Y; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
  • Fang H; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
  • Shao X; Shandong Cigna Detection Technology Co., Ltd, Qingdao, 266237, China.
  • Liu M; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
  • Jiang K; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
  • Wang M; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
  • Wang B; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. Electronic address:
  • Wang L; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean
Fish Shellfish Immunol ; 95: 368-382, 2019 Dec.
Article en En | MEDLINE | ID: mdl-31678533
Our previous work showed that using Lactobacillus pentosus HC-2 as a probiotic could improve the growth performance, immune response, gut bacterial diversity and disease resistance of Litopenaeus vannamei. However, the probiotic mechanism had not been fully characterized. In the present study, histology and proteomic analysis were performed to explore the influence of HC-2 surface protein on its probiotic effects on L. vannamei after feeding either the intact surface proteins, the probiotic treated with lithium chloride (LiCl) to remove noncovalently bound surface proteins or no probiotic for four weeks. Histological observation found that feeding with normal HC-2 obviously improved the intestinal histology and enhanced the protective effect against pathogen damage, but feeding with LiCl-treated HC-2 did not improve the intestinal environment. A total of over 2764 peptides and 1118 uniproteins were identified from the L. vannamei midgut; 211 proteins were significantly differentially expressed in the normal HC-2 group compared with the control group; 510 proteins were significantly differentially expressed in the LiCl-treated HC-2 group compared with the control group, and 458 proteins were significantly differentially expressed in the LiCl-treated HC-2 group compared with the normal HC-2 group. GO/KEGG enrichment analysis of the significantly different proteins demonstrated that feeding normal HC-2 mainly induced immune response, metabolic, cell adhesion and cell-cell signaling-related protein upregulation, which contributed to bacterial adhesion and colonization in the midgut to improve the shrimp immune system and growth, but these proteins were suppressed after the shrimp were fed bacteria deprived of surface proteins. Taken together, these results indicate that the surface proteins were indispensable for HC-2 to execute probiotic effects in the shrimp midgut.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Probióticos / Penaeidae / Enfermedades de los Peces / Peces / Lactobacillus pentosus Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Probióticos / Penaeidae / Enfermedades de los Peces / Peces / Lactobacillus pentosus Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido