Your browser doesn't support javascript.
loading
High temporal resolution of leaf area data improves empirical estimation of grain yield.
Waldner, François; Horan, Heidi; Chen, Yang; Hochman, Zvi.
Afiliación
  • Waldner F; CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, Queensland, 4067, Australia. franz.waldner@csiro.au.
  • Horan H; CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, Queensland, 4067, Australia.
  • Chen Y; CSIRO Data61, Underwood Avenue, Goods Shed North, 34 Village St, Victoria, 3008, Australia.
  • Hochman Z; CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, Queensland, 4067, Australia.
Sci Rep ; 9(1): 15714, 2019 10 31.
Article en En | MEDLINE | ID: mdl-31673050
Empirical yield estimation from satellite data has long lacked suitable combinations of spatial and temporal resolutions. Consequently, the selection of metrics, i.e., temporal descriptors that predict grain yield, has likely been driven by practicality and data availability rather than by systematic targetting of critically sensitive periods as suggested by knowledge of crop physiology. The current trend towards hyper-temporal data raises two questions: How does temporality affect the accuracy of empirical models? Which metrics achieve optimal performance? We followed an in silico approach based on crop modelling which can generate any observation frequency, explore a range of growing conditions and reduce the cost of measuring yields in situ. We simulated wheat crops across Australia and regressed six types of metrics derived from the resulting time series of Leaf Area Index (LAI) against wheat yields. Empirical models using advanced LAI metrics achieved national relevance and, contrary to simple metrics, did not benefit from the addition of weather information. This suggests that they already integrate most climatic effects on yield. Simple metrics remained the best choice when LAI data are sparse. As we progress into a data-rich era, our results support a shift towards metrics that truly harness the temporal dimension of LAI data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Triticum / Grano Comestible / Hojas de la Planta Tipo de estudio: Prognostic_studies País/Región como asunto: Oceania Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Triticum / Grano Comestible / Hojas de la Planta Tipo de estudio: Prognostic_studies País/Región como asunto: Oceania Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido