Your browser doesn't support javascript.
loading
Microfluidic Magnetic Mixing at Low Reynolds Numbers and in Stagnant Fluids.
Shanko, Eriola-Sophia; van de Burgt, Yoeri; Anderson, Patrick D; den Toonder, Jaap M J.
Afiliación
  • Shanko ES; Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. e.shanko@tue.nl.
  • van de Burgt Y; Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Y.B.v.d.Burgt@tue.nl.
  • Anderson PD; Department of Mechanical Engineering, Polymer Technology Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. p.d.anderson@tue.nl.
  • den Toonder JMJ; Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. J.M.J.d.Toonder@tue.nl.
Micromachines (Basel) ; 10(11)2019 Oct 29.
Article en En | MEDLINE | ID: mdl-31671753
Microfluidic mixing becomes a necessity when thorough sample homogenization is required in small volumes of fluid, such as in lab-on-a-chip devices. For example, efficient mixing is extraordinarily challenging in capillary-filling microfluidic devices and in microchambers with stagnant fluids. To address this issue, specifically designed geometrical features can enhance the effect of diffusion and provide efficient mixing by inducing chaotic fluid flow. This scheme is known as "passive" mixing. In addition, when rapid and global mixing is essential, "active" mixing can be applied by exploiting an external source. In particular, magnetic mixing (where a magnetic field acts to stimulate mixing) shows great potential for high mixing efficiency. This method generally involves magnetic beads and external (or integrated) magnets for the creation of chaotic motion in the device. However, there is still plenty of room for exploiting the potential of magnetic beads for mixing applications. Therefore, this review article focuses on the advantages of magnetic bead mixing along with recommendations on improving mixing in low Reynolds number flows (Re ≤ 1) and in stagnant fluids.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Suiza