Your browser doesn't support javascript.
loading
Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere.
Sandvik, Oscar S; Friberg, Johan; Martinsson, Bengt G; van Velthoven, Peter F J; Hermann, Markus; Zahn, Andreas.
Afiliación
  • Sandvik OS; Division of Nuclear Physics, Lund University, Lund, Sweden. oscar.sandvik@nuclear.lu.se.
  • Friberg J; Division of Nuclear Physics, Lund University, Lund, Sweden.
  • Martinsson BG; Division of Nuclear Physics, Lund University, Lund, Sweden.
  • van Velthoven PFJ; Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands.
  • Hermann M; Leibniz Institute for Tropospheric Research, Leipzig, Germany.
  • Zahn A; Institute of Meteorology and Climate Research, Institute of Technology, Karlsruhe, Germany.
Sci Rep ; 9(1): 15576, 2019 Oct 30.
Article en En | MEDLINE | ID: mdl-31666595
Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido