Your browser doesn't support javascript.
loading
The dissociation mechanism of processive cellulases.
Vermaas, Josh V; Kont, Riin; Beckham, Gregg T; Crowley, Michael F; Gudmundsson, Mikael; Sandgren, Mats; Ståhlberg, Jerry; Väljamäe, Priit; Knott, Brandon C.
Afiliación
  • Vermaas JV; Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401.
  • Kont R; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia 51010.
  • Beckham GT; National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401.
  • Crowley MF; Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401.
  • Gudmundsson M; Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-75651 Uppsala, Sweden.
  • Sandgren M; Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-75651 Uppsala, Sweden.
  • Ståhlberg J; Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-75651 Uppsala, Sweden.
  • Väljamäe P; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia 51010.
  • Knott BC; Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401; brandon.knott@nrel.gov.
Proc Natl Acad Sci U S A ; 116(46): 23061-23067, 2019 11 12.
Article en En | MEDLINE | ID: mdl-31666327
Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trichoderma / Proteínas Fúngicas / Celulasas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trichoderma / Proteínas Fúngicas / Celulasas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos