Your browser doesn't support javascript.
loading
Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates.
Buresova, A; Kopecky, J; Hrdinkova, V; Kamenik, Z; Omelka, M; Sagova-Mareckova, M.
Afiliación
  • Buresova A; Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czech Republic.
  • Kopecky J; Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
  • Hrdinkova V; Ecologie Microbienne, Université Claude Bernard Lyon 1, Villeurbanne, France.
  • Kamenik Z; Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czech Republic.
  • Omelka M; Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czech Republic.
  • Sagova-Mareckova M; Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article en En | MEDLINE | ID: mdl-31604765
Soil microorganisms are diverse, although they share functions during the decomposition of organic matter. Thus, preferences for soil conditions and litter quality were explored to understand their niche partitioning. A 1-year-long litterbag transplant experiment evaluated how soil physicochemical traits of contrasting sites combined with chemically distinct litters of sedge (S), milkvetch (M) from a grassland, and beech (B) from forest site decomposition. Litter was assessed by mass loss; C, N, and P contents; and low-molecular-weight compounds. Decomposition was described by the succession of fungi, Actinobacteria, Alphaproteobacteria, and Firmicutes; bacterial diversity; and extracellular enzyme activities. The M litter decomposed faster at the nutrient-poor forest site, where the extracellular enzymes were more active, but microbial decomposers were not more abundant. Actinobacteria abundance was affected by site, while Firmicutes and fungi by litter type and Alphaproteobacteria by both factors. Actinobacteria were characterized as late-stage substrate generalists, while fungi were recognized as substrate specialists and site generalists, particularly in the grassland. Overall, soil conditions determined the decomposition rates in the grassland and forest, but successional patterns of the main decomposers (fungi and Actinobacteria) were determined by litter type. These results suggest that shifts in vegetation mostly affect microbial decomposer community composition.IMPORTANCE Anthropogenic disturbance may cause shifts in vegetation and alter the litter input. We studied the decomposition of different litter types under soil conditions of a nutrient-rich grassland and nutrient-poor forest to identify factors responsible for changes in the community structure and succession of microbial decomposers. This will help to predict the consequences of induced changes on the abundance and activity of microbial decomposers and recognize if the decomposition process and resulting quality and quantity of soil organic matter will be affected at various sites.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Microbiota Tipo de estudio: Prognostic_studies Idioma: En Revista: Appl Environ Microbiol Año: 2019 Tipo del documento: Article País de afiliación: República Checa Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Microbiota Tipo de estudio: Prognostic_studies Idioma: En Revista: Appl Environ Microbiol Año: 2019 Tipo del documento: Article País de afiliación: República Checa Pais de publicación: Estados Unidos