Your browser doesn't support javascript.
loading
Optimization of photon storage fidelity in ordered atomic arrays.
Manzoni, M T; Moreno-Cardoner, M; Asenjo-Garcia, A; Porto, J V; Gorshkov, A V; Chang, D E.
Afiliación
  • Manzoni MT; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain.
  • Moreno-Cardoner M; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain.
  • Asenjo-Garcia A; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain.
  • Porto JV; Norman Bridge Laboratory of Physics MC12-33, California Institute of Technology, Pasadena, CA 91125, United States of America.
  • Gorshkov AV; Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA91125, United States of America.
  • Chang DE; Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742, United States of America.
New J Phys ; 202018.
Article en En | MEDLINE | ID: mdl-31555054
A major application for atomic ensembles consists of a quantum memory for light, in which an optical state can be reversibly converted to a collective atomic excitation on demand. There exists a well-known fundamental bound on the storage error, when the ensemble is describable by a continuous medium governed by the Maxwell-Bloch equations. However, these equations are semi-phenomenological, as they treat emission of the atoms into other directions other than the mode of interest as being independent. On the other hand, in systems such as dense, ordered atomic arrays, atoms interact with each other strongly and spatial interference of the emitted light might be exploited to suppress emission into unwanted directions, thereby enabling improved error bounds. Here, we develop a general formalism that fully accounts for spatial interference, and which finds the maximum storage efficiency for a single photon with known spatial input mode into a collection of atoms with discrete, known positions. As an example, we apply this technique to study a finite two-dimensional square array of atoms. We show that such a system enables a storage error that scales with atom number N a like ∼ ( log N a ) 2 ∕ N a 2 , and that, remarkably, an array of just 4 × 4 atoms in principle allows for an error of less than 1%, which is comparable to a disordered ensemble with an optical depth of around 600.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: New J Phys Año: 2018 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: New J Phys Año: 2018 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido