Your browser doesn't support javascript.
loading
Acoustically responsive polydopamine nanodroplets: A novel theranostic agent.
Mannaris, Christophoros; Yang, Chuanxu; Carugo, Dario; Owen, Joshua; Lee, Jeong Yu; Nwokeoha, Sandra; Seth, Anjali; Teo, Boon Mian.
Afiliación
  • Mannaris C; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK. Electronic address: christophoros.mannaris@eng.ox.ac.uk.
  • Yang C; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
  • Carugo D; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Mechatronics and Bioengineering Science Research Groups, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
  • Owen J; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
  • Lee JY; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
  • Nwokeoha S; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
  • Seth A; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
  • Teo BM; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; School of Chemistry, Clayton Campus, Monash University Victoria, 3800,
Ultrason Sonochem ; 60: 104782, 2020 Jan.
Article en En | MEDLINE | ID: mdl-31539725
Ultrasound-induced cavitation has been used as a tool of enhancing extravasation and tissue penetration of anticancer agents in tumours. Initiating cavitation in tissue however, requires high acoustic intensities that are neither safe nor easy to achieve with current clinical systems. The use of cavitation nuclei can however lower the acoustic intensities required to initiate cavitation and the resulting bio-effects in situ. Microbubbles, solid gas-trapping nanoparticles, and phase shift nanodroplets are some examples in a growing list of proposed cavitation nuclei. Besides the ability to lower the cavitation threshold, stability, long circulation times, biocompatibility and biodegradability, are some of the desirable characteristics that a clinically applicable cavitation agent should possess. In this study, we present a novel formulation of ultrasound-triggered phase transition sub-micrometer sized nanodroplets (~400 nm) stabilised with a biocompatible polymer, polydopamine (PDA). PDA offers some important benefits: (1) facile fabrication, as dopamine monomers are directly polymerised on the nanodroplets, (2) high polymer biocompatibility, and (3) ease of functionalisation with other molecules such as drugs or targeting species. We demonstrate that the acoustic intensities required to initiate inertial cavitation can all be achieved with existing clinical ultrasound systems. Cell viability and haemolysis studies show that nanodroplets are biocompatible. Our results demonstrate the great potential of PDA nanodroplets as an acoustically active nanodevice, which is highly valuable for biomedical applications including drug delivery and treatment monitoring.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos