Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal-organic frameworks toward one-pot tandem reactions.
J Colloid Interface Sci
; 557: 207-215, 2019 Dec 01.
Article
en En
| MEDLINE
| ID: mdl-31521970
The development of a suitable catalytic system in the single catalyst has always been the pursuit for synthetic chemists in order to perform the traditional stepwise reactions in one-pot mode. In this work, an ultra-stable bifunctional catalyst of Pd@MIL-101-SO3H was successfully constructed and applied in the one-pot oxidation-acetalization reaction whose products have been widely utilized as fuel additives, perfumes, pharmaceuticals and polymer chemistry. The excellent catalytic performance (>99% yields), on the one hand, can be ascribed to the synergistic effects of Pd NPs with both Lewis and Bronsted acid encapsulated within a sulfonated MIL-101(Cr). On the other hand, the exceptionally high capacity of water adsorption in MIL-101(Cr) could promote the equilibrium movement via interrupting the reversible process. More importantly, Pd@MIL-101-SO3H is recyclable and can be reused for at least 8 times without sacrificing its catalytic activities. As far as we know, this is the first time that a water adsorption enhanced equilibrium movement of reversible reaction by porous catalyst to achieve high yields has been realized in Pd@MIL-101-SO3H, which may provide an absolutely new and efficient strategy especially for designing reaction-oriented catalysts.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2019
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos