Your browser doesn't support javascript.
loading
Two-sample test for correlated data under outcome-dependent sampling with an application to self-reported weight loss data.
Cai, Yi; Huang, Jing; Ning, Jing; Lee, Mei-Ling Ting; Rosner, Bernard; Chen, Yong.
Afiliación
  • Cai Y; AT&T Services, Inc, Plano, Texas.
  • Huang J; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania.
  • Ning J; Department of Statistical Science, Cornell University, Ithaca, New York.
  • Lee MT; Department of Epidemiology and Biostatistics, The University of Maryland School of Public Health, College Park, Maryland.
  • Rosner B; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts.
  • Chen Y; Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Stat Med ; 38(25): 4999-5009, 2019 11 10.
Article en En | MEDLINE | ID: mdl-31489699
Standard methods for two-sample tests such as the t-test and Wilcoxon rank sum test may lead to incorrect type I errors when applied to longitudinal or clustered data. Recent alternatives of two-sample tests for clustered data often require certain assumptions on the correlation structure and/or noninformative cluster size. In this paper, based on a novel pseudolikelihood for correlated data, we propose a score test without knowledge of the correlation structure or assuming data missingness at random. The proposed score test can capture differences in the mean and variance between two groups simultaneously. We use projection theory to derive the limiting distribution of the test statistic, in which the covariance matrix can be empirically estimated. We conduct simulation studies to evaluate the proposed test and compare it with existing methods. To illustrate the usefulness proposed test, we use it to compare self-reported weight loss data in a friends' referral group, with the data from the Internet self-joining group.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pérdida de Peso / Biometría / Autoinforme Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pérdida de Peso / Biometría / Autoinforme Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido