Speeding Up Percolator.
J Proteome Res
; 18(9): 3353-3359, 2019 09 06.
Article
en En
| MEDLINE
| ID: mdl-31407580
The processing of peptide tandem mass spectrometry data involves matching observed spectra against a sequence database. The ranking and calibration of these peptide-spectrum matches can be improved substantially using a machine learning postprocessor. Here, we describe our efforts to speed up one widely used postprocessor, Percolator. The improved software is dramatically faster than the previous version of Percolator, even when using relatively few processors. We tested the new version of Percolator on a data set containing over 215 million spectra and recorded an overall reduction to 23% of the running time as compared to the unoptimized code. We also show that the memory footprint required by these speedups is modest relative to that of the original version of Percolator.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Péptidos
/
Programas Informáticos
/
Proteómica
Idioma:
En
Revista:
J Proteome Res
Asunto de la revista:
BIOQUIMICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos