Your browser doesn't support javascript.
loading
Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy.
Quinlan, K A; Reedich, E J; Arnold, W D; Puritz, A C; Cavarsan, C F; Heckman, C J; DiDonato, C J.
Afiliación
  • Quinlan KA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.
  • Reedich EJ; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.
  • Arnold WD; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
  • Puritz AC; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
  • Cavarsan CF; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
  • Heckman CJ; Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois.
  • DiDonato CJ; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
J Neurophysiol ; 122(4): 1297-1311, 2019 10 01.
Article en En | MEDLINE | ID: mdl-31365319
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Atrofia Muscular Espinal / Proteína 1 para la Supervivencia de la Neurona Motora / Neuronas Motoras Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Atrofia Muscular Espinal / Proteína 1 para la Supervivencia de la Neurona Motora / Neuronas Motoras Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos