Your browser doesn't support javascript.
loading
ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning.
Bergler, Christian; Schröter, Hendrik; Cheng, Rachael Xi; Barth, Volker; Weber, Michael; Nöth, Elmar; Hofer, Heribert; Maier, Andreas.
Afiliación
  • Bergler C; Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab, Martensstr. 3, 91058, Erlangen, Germany. christian.bergler@fau.de.
  • Schröter H; Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab, Martensstr. 3, 91058, Erlangen, Germany.
  • Cheng RX; Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
  • Barth V; Anthro-Media, Nansenstr. 19, 12047, Berlin, Germany.
  • Weber M; Anthro-Media, Nansenstr. 19, 12047, Berlin, Germany.
  • Nöth E; Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab, Martensstr. 3, 91058, Erlangen, Germany. elmar.noeth@fau.de.
  • Hofer H; Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
  • Maier A; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
Sci Rep ; 9(1): 10997, 2019 07 29.
Article en En | MEDLINE | ID: mdl-31358873
Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis - particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository - the Orchive - comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vocalización Animal / Orca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vocalización Animal / Orca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido